Rac1 induces the clustering of AMPA receptors during spinogenesis.

نویسندگان

  • Katie M Wiens
  • Hang Lin
  • Dezhi Liao
چکیده

Glutamatergic synapses switch from nonspiny synapses to become dendritic spines during early neuronal development. Here, we report that the lack of sufficient Rac1, a small RhoGTPase, contributes to the absence of spinogenesis in immature neurons. The overexpression of green fluorescence protein-tagged wild-type Rac1 initiated the formation of dendritic spines in cultured dissociated hippocampal neurons younger than 11 d in vitro, indicating that Rac1 is likely one of the missing pieces responsible for the lack of spines in immature neurons. The overexpression of wild-type Rac1 also induced the clustering of AMPA receptors (AMPARs) and increased the amplitude of miniature EPSCs (mEPSCs). The expression of constitutively active Rac1 induced the formation of unusually large synapses with large amounts of AMPAR clusters. Also, our live imaging experiments revealed that the contact of an axon induced the clustering of Rac1, and subsequent morphological changes led to spinogenesis. Additionally, the overexpression of wild-type Rac1 and constitutively active Rac1 increased the size of preexisting spines and the amplitude of mEPSCs in mature neurons (>21 d in vitro) within 24 h after transfection. Together, these results indicate that activation of Rac1 enhances excitatory synaptic transmission by recruiting AMPARs to synapses during spinogenesis, thus providing a mechanistic link between presynaptic and postsynaptic developmental changes. Furthermore, we show that Rac1 has two distinct roles at different stages of neuronal development. The activation of Rac1 initiates spinogenesis at an early stage and regulates the function and morphology of preexisting spines at a later stage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation

The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the A...

متن کامل

Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1

Synaptic clustering of neurotransmitter receptors is crucial for efficient signal transduction and integration in neurons. PDZ domain-containing proteins such as PSD-95/SAP90 interact with the intracellular C termini of a variety of receptors and are thought to be important in the targeting and anchoring of receptors to specific synapses. Here, we show that PICK1 (protein interacting with C kin...

متن کامل

Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons

Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippo...

متن کامل

MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression.

The microtubule-associated protein 1B (MAP1B) plays critical roles in neurite growth and synapse maturation during brain development. This protein is well expressed in the adult brain. However, its function in mature neurons remains unknown. We have used a genetically modified mouse model and shRNA techniques to assess the role of MAP1B at established synapses, bypassing MAP1B functions during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 46  شماره 

صفحات  -

تاریخ انتشار 2005